Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
China Geology ; 5(3):402-410, 2022.
Article in English | PMC | ID: covidwho-2044359

ABSTRACT

This study investigated water samples collected from the surface water and groundwater in Wuhan City, Hubei Province, China in different stages of the outbreak of the coronavirus disease 2019 (hereinafter referred to as COVID-19) in the city, aiming to determine the distribution characteristics of antiviral drugs in the city’s waters. The results are as follows. The main hydrochemical type of surface water and groundwater in Wuhan was Ca-HCO3. The major chemical components in the groundwater had higher concentrations and spatial variability than those in the surface water. Two antiviral drugs and two glucocorticoids were detected in the surface water, groundwater, and sewage during the COVID-19 outbreak. Among them, chloroquine phosphate and cortisone had higher detection rates of 32.26% and 25.80%, respectively in all samples. The concentrations of residual drugs in East Lake were higher than those in other waters. The main drug detected in the waters in the later stage of the COVID-19 outbreak in Wuhan was chloroquine phosphate, whose detection rates in the surface water and the groundwater were 53.85% and 28.57%, respectively. Moreover, the detection rate and concentration of chloroquine phosphate were higher in East Lake than in Huangjia Lake. The groundwater containing chloroquine phosphate was mainly distributed along the river areas where the groundwater was highly vulnerable. The residual drugs in the surface water and the groundwater had lower concentrations in the late stage of the COVID-19 outbreak than in the middle of the outbreak, and they have not yet caused any negative impacts on the ecological environment.©2022 China Geology Editorial Office.

2.
Crit Rev Food Sci Nutr ; : 1-21, 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1730444

ABSTRACT

Diabetes has become one of the biggest non-communicable diseases and threatens human health worldwide. The management of diabetes is a complex and multifaceted process including drug therapy and lifestyle interventions. Dietary components are essential for both diabetes management and health and survival of trillions of the gut microbiota (GM). Herein, we will discuss the relationship between diets and GM, the mechanism linking diabetes and gut dysbiosis, and the effects of dietary components (nutrients, phytochemicals, probiotics, food additives, etc.) on diabetes from the perspective of modulating GM. The GM of diabetic patients differs from that of health individuals and GM disorder contributes to the onset and maintenance of diabetes. Studies in humans and animal models consolidate that dietary component is a key regulator of diabetes and increasing evidence suggests that the alteration of GM plays a salient role in dietary interventions for diabetes. Given that diabetes is a major public health issue, especially that diabetes is linked with a high risk of mortality from COVID-19, this review provides compelling evidence for that targeting GM by dietary components is a promising strategy, and offers new insights into potential preventive or therapeutic approaches (dietary and pharmacological intervention) for the clinical management of diabetes.

3.
Pharmaceutics ; 13(8)2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1410544

ABSTRACT

Prompted by the ground-breaking discovery of the rodent odorant receptor (OR) gene family within the olfactory epithelium nearly 30 years ago, followed by that of OR genes in cells of the mammalian germ line, and potentiated by the identification of ORs throughout the body, our appreciation for ORs as general chemoreceptors responding to odorant compounds in the regulation of physiological or pathophysiological processes continues to expand. Ectopic ORs are now activated by a diversity of flavor compounds and are involved in diverse physiological phenomena varying from adipogenesis to myogenesis to hepatic lipid accumulation to serotonin secretion. In this review, we outline the key biological functions of the ectopic ORs responding to flavor compounds and the underlying molecular mechanisms. We also discuss research opportunities for utilizing ectopic ORs as therapeutic strategies in the treatment of human disease as well as challenges to be overcome in the future. The recognition of the potent function, signaling pathway, and pharmacology of ectopic ORs in diverse tissues and cell types, coupled with the fact that they belong to G protein-coupled receptors, a highly druggable protein family, unequivocally highlight the potential of ectopic ORs responding to flavor compounds, especially food-derived odorant compounds, as a promising therapeutic strategy for various diseases.

SELECTION OF CITATIONS
SEARCH DETAIL